KI in der Hochschulbildung

Autor: Simion Twizerimana


In einer Welt, in der Künstliche Intelligenz immer mehr Aufgaben übernimmt, bleibt die Fragen: Verdienen wir Abschlüsse, wenn KI die Arbeit erledigt? & Welche Rolle spielt noch die Hochschulbildung?

  1. Einleitung
  2. Die aktuelle Situation
  3. Die Folgen für das Studium
  4. Wie können Hochschulen reagieren?
  5. Fazit
  6. Literaturverzeichnis

1. Einleitung

Mal ehrlich, wie viele von uns haben bei der letzten Hausarbeit oder Prüfung nicht schon mal heimlich ChatGPT oder andere KI-Tools benutzt? Es ist so einfach: Frag die KI, lass sie dir was raushauen, und zack – fertig. Aber das wirft eine ziemlich große Frage auf: Wenn wir uns jetzt schon so sehr auf KI verlassen, wie fit sind wir dann wirklich für die Arbeitswelt nach dem Studium?

In diesem Beitrag geht’s genau darum: Wie verändert KI unsere Hochschulbildung und unsere Zukunft als Absolvent:innen? Werden wir noch die Skills haben, die wir wirklich brauchen, oder macht uns die KI ein bisschen zu bequem?

Eigene Darstellung, basierend auf erhobenen Daten zu beliebten Tools und ihrer Nutzung (2024)

2. Die aktuelle Situation der KI in der Hochschulbildung

Die Nutzung von KI-Tools hat in der Hochschulbildung einen festen Platz eingenommen. Eine aktuelle Umfrage zeigt, dass über 63 % der Studierenden in Deutschland KI-Tools wie ChatGPT mindestens einmal während ihres Studiums verwendet haben. Besonders auffällig: 25 % setzen diese Tools regelmäßig oder sehr häufig ein. Dies verdeutlicht, wie stark KI in der Hochschulbildung bereits den Alltag an Universitäten und Hochschulen prägt.

Beliebte Tools und ihre Nutzung:

  • ChatGPT: Fast die Hälfte der Studierenden (49 %) setzt auf ChatGPT, vor allem für Ideenfindung, das Verfassen von Hausarbeiten und die Bearbeitung komplexer Themen.
  • DeepL: Etwa 12 % nutzen dieses Tool für präzise Übersetzungen und das Verständnis fremdsprachiger Literatur.
  • Grammarly: Dieses Tool wird zur Optimierung der Grammatik und Sprache von Texten genutzt und ist besonders beliebt für formale Aufgaben.

Die Einsatzbereiche dieser Tools sind vielfältig: Sie reichen von der Ideenfindung über Datenanalysen bis hin zur Verbesserung von Texten und Übersetzungen. Diese Tools bieten klare Vorteile, indem sie Routineaufgaben vereinfachen und Studierenden helfen, Zeit zu sparen – ein weiterer Beleg für die zunehmende Rolle von KI in der Hochschulbildung.

KI und Bildung: Einblicke in die Zukunft

Erfahren Sie, wie KI unser Lernen revolutioniert und Bildung neu definiert! Sehen Sie sich das spannende Video von ZDFheute an:

3. Die Folgen der KI in der Hochschulbildung für das Studium

Der verstärkte Einsatz von KI im Studium wirft eine wichtige Frage auf: Verlieren Studierende grundlegende Schlüsselkompetenzen, wenn immer mehr Aufgaben automatisiert erledigt werden? Wenn KI zunehmend die Ideenfindung und Problemlösung übernimmt, könnte es zu einem Rückgang des kritischen Denkens, der Selbstständigkeit und der Fähigkeit zum tiefen Lernen kommen. Doch was passiert, wenn Studierende sich zu sehr auf KI in der Hochschulbildung verlassen und die Herausforderung verlieren, selbst komplexe Problemlösungsprozesse zu durchlaufen?

Ein weiteres Risiko besteht darin, dass Studierende ihre Denkprozesse und Entscheidungsfindung immer stärker KI-Systemen überlassen. Diese Abhängigkeit könnte langfristig die Selbstständigkeit und Eigenverantwortung beeinträchtigen, da das Vertrauen in KI dazu führen könnte, dass eigenes analytisches Denken und Lernprozesse in den Hintergrund treten.

Stell dir vor, ein Python-Programmierer kann ohne KI nicht mal die einfachsten Codezeilen schreiben, oder ein Webentwickler ist nicht in der Lage, eine eigene Portfolio-Seite zu erstellen, ohne auf KI zurückzugreifen. Studien zeigen, dass Studierende oft mit hohen Noten durch Kurse kommen, ohne wirklich das tiefere Verständnis des Lernstoffs zu erlangen. Dies wirft eine wichtige Frage auf: Studieren wir wirklich, um Fähigkeiten zu erlernen, die uns in der Arbeitswelt voranbringen? Oder geht es uns am Ende nur darum, den Abschluss zu bekommen, ohne die nötigen praktischen Kompetenzen zu besitzen?

Aber: Kann KI in der Hochschulbildung uns auch produktiver machen?

Der gezielte Einsatz von KI-Tools kann Studierenden helfen, ihre Produktivität zu steigern und gleichzeitig ihre Lernprozesse zu optimieren. Studien zeigen, dass KI insbesondere bei der Recherche und Strukturierung von Lernmaterialien hilfreich sein kann. So ermöglicht etwa ChatGPT eine effiziente Ideensammlung und hilft, komplexe Themen in einfachere Abschnitte zu unterteilen. Das spart nicht nur Zeit, sondern fördert auch das Verständnis und die Retention von Wissen.

Darüber hinaus bieten Übersetzungs-Tools wie DeepL eine schnelle und präzise Möglichkeit, mehrsprachige Quellen zu nutzen, ohne die Qualität der Informationen zu verlieren. Das hilft Studierenden, einen breiteren Zugang zu wissenschaftlichen Arbeiten und Fachliteratur zu erhalten. Grammarly wiederum kann als Rechtschreib- und Grammatikhilfe nicht nur die sprachliche Qualität von Hausarbeiten verbessern, sondern auch Studierenden helfen, sich klarer und präziser auszudrücken.

Eine Studie von JISC und EAB zeigt, dass die Integration von KI-Tools in den Lernalltag zu einer besseren Zeitnutzung führt, da Studierende weniger Zeit mit administrativen oder repetitiven Aufgaben verbringen und sich stärker auf kreative und analytische Aufgaben konzentrieren können. So bietet KI in der Hochschulbildung nicht nur eine Entlastung, sondern fördert auch die Konzentration auf wesentliche Lerninhalte.

Insgesamt lässt sich sagen, dass KI in der Hochschulbildung  das Potenzial hat, Studierenden zu mehr Effizienz und Produktivität zu verhelfen – vorausgesetzt, sie wird verantwortungsvoll und gezielt eingesetzt. Die entscheidende Frage ist: Wie finden wir eine Balance zwischen der Nutzung von KI zur Steigerung der Produktivität und der Förderung eigener Kompetenzen, um sicherzustellen, dass wir nicht nur Abhängigkeiten schaffen, sondern auch Fähigkeiten aufbauen, die uns langfristig weiterbringen?

4. Wie können Hochschulen auf die Integration von KI in der Hochschulbildung reagieren?

Eine der zentralen Herausforderungen für Hochschulen im Umgang mit der zunehmenden Nutzung von KI durch Studierende liegt darin, sowohl Chancen als auch Risiken dieser Technologien zu erkennen und darauf gezielt zu reagieren. Um KI verantwortungsvoll in der Hochschulbildung zu integrieren, könnten Universitäten neue Ansätze entwickeln, die sowohl die Fähigkeiten der Studierenden als auch die Anforderungen des modernen Arbeitsmarktes berücksichtigen.

“AI in Schools: Cheater or Tutor?” von Paul Matthews, präsentiert bei TEDxHobart

Vorschläge zur Anpassung

Ein erster Schritt könnte die Einführung von KI-Literacy-Workshops sein, in denen Studierende lernen, wie sie KI-Tools wie ChatGPT effektiv und kritisch nutzen können. Diese Workshops sollten darauf abzielen, die Funktionsweise, Grenzen und Risiken solcher Technologien zu verdeutlichen, damit Studierende fundierte Entscheidungen treffen können. Darüber hinaus könnten KI-Projekte fest in die Curricula integriert werden, um den Studierenden praktische Fähigkeiten zu vermitteln, wie zum Beispiel das Programmieren von KI-Anwendungen oder die Nutzung von KI in der Datenanalyse.

Auch die Lehrenden könnten stärker unterstützt werden. KI-gestützte Lehrmethoden könnten helfen, repetitive Aufgaben wie das Korrigieren von Hausarbeiten zu automatisieren, während mehr Zeit für direkte Interaktion mit den Studierenden bleibt. Interaktive Lernplattformen, die auf KI basieren, könnten zudem eingesetzt werden, um individuelle Lernwege zu fördern.

Anpassungen in der Hochschulpolitik zur Förderung von KI in der Hochschulbildung

Ein weiterer wichtiger Ansatzpunkt ist die Anpassung der Richtlinien zur Nutzung von KI in der Hochschulbildung. Universitäten sollten klare Leitlinien entwickeln, die festlegen, in welchen Kontexten KI-Tools erlaubt sind und wann deren Nutzung als Verstoß gegen akademische Integrität gilt. Gleichzeitig könnte von den Studierenden verlangt werden, die Nutzung von KI in ihren Arbeiten transparent offenzulegen.

Um dem Risiko von Plagiaten entgegenzuwirken, könnten neue Tools eingeführt werden, die KI-generierte Inhalte identifizieren können. Für Programmieraufgaben könnten spezielle Analyseprogramme eingesetzt werden, die zeigen, wann und wie Tools wie GitHub Copilot oder ChatGPT verwendet wurden. Dies würde nicht nur den Missbrauch von KI eindämmen, sondern auch eine gezielte Nachverfolgung der Lernfortschritte ermöglichen.

Neue Prüfungsformen

Schließlich sollten auch die Prüfungsformate überdacht werden. Praktische Prüfungen, die persönliche und praxisnahe Fähigkeiten betonen, könnten sicherstellen, dass Studierende den Stoff wirklich beherrschen. Gleichzeitig könnten offene Aufgabenstellungen, bei denen der Einsatz von KI erlaubt ist, die Reflexionsfähigkeit fördern. Studierende könnten aufgefordert werden, detailliert zu dokumentieren, wie sie KI eingesetzt haben und warum sie diese Ansätze gewählt haben.

Durch diese Maßnahmen könnten Hochschulen eine Balance zwischen der Nutzung von KI in der Hochschulbildung und der Förderung eigenständiger Kompetenzen schaffen, sodass Studierende bestmöglich auf eine zunehmend digitalisierte Arbeitswelt vorbereitet werden.

5. Fazit: KI in der Hochschulbildung zeigt, dass Abschlüsse allein nicht mehr ausreichen – die Art und Weise, wie wir lernen, muss sich anpassen.

Die zunehmende Integration von KI in Bildungsprozesse stellt uns vor die Herausforderung, unser Verständnis von Lernen neu zu definieren. Während KI das Potenzial hat, Studierende produktiver und effizienter zu machen, darf dies nicht auf Kosten grundlegender Kompetenzen wie kritischem Denken, Kreativität und Selbstständigkeit geschehen.

Ein reiner Fokus auf Abschlüsse ohne die dahinterliegenden Fähigkeiten ist in einer sich schnell wandelnden Arbeitswelt nicht mehr ausreichend. ielmehr müssen sowohl Studierende als auch Hochschulen den bewussten und reflektierten Einsatz von KI in der Hochschulbildung im Lernalltag integrieren. Hochschulen tragen dabei eine besondere Verantwortung, die Studierenden nicht nur mit theoretischem Wissen, sondern auch mit den praktischen Werkzeugen auszustatten, um in einer KI-getriebenen Welt erfolgreich zu sein.

Abschließend bleibt zu sagen: Lernen bedeutet mehr als nur Wissen anzusammeln – es geht darum, dieses Wissen aktiv anwenden zu können. Nur durch eine bewusste Kombination von Technologie und menschlichen Fähigkeiten kann eine zukunftsfähige Bildung gewährleistet werden.

Was denkt ihr über die Nutzung von KI in der Hochschulbildung? Teile gerne eure Meinung in den Kommentaren! 🚀

Ach ja, btw: KI hat bei der Erstellung dieses Beitrags mitgeholfen. ☺️

Weiterführende Informationen gibt es hier:

Literaturverzeichnis

KI im Arbeitsmarkt: Chance und Risiko zugleich

Autoren: Dominik Hausfeld und Fynn Sylla


Bild via Pexels (CC Lizenz)

Gliederung

Was ist KI?

KI (Künstliche Intelligenz) bezieht sich auf die Fähigkeit von Computer-Systemen, Aufgaben zu verstehen und durchzuführen, die normalerweise erfordern, dass ein Mensch Intelligenz besitzt, wie das Verstehen von Sprache, das Lösen von Problemen, das Lernen aus Erfahrungen und das Erkennen von Mustern. Es gibt verschiedene Arten von KI, wie zum Beispiel Regelbasierte KI, maschinelles Lernen und kognitive KI.

Die Verbreitung von KI im Arbeitsmarkt birgt sowohl Chancen als auch Risiken. Einerseits ermöglicht KI eine Effizienzsteigerung in vielen Branchen und kann dazu beitragen, Arbeitsplätze zu schaffen. Andererseits besteht die Gefahr, dass bestimmte Berufsgruppen durch KI-Systeme ersetzt werden und Arbeitslosigkeit entsteht.

Chancen von künstlicher Intelligenz

Ein großer Vorteil von KI im Arbeitsmarkt ist die Automatisierung von Prozessen. Durch den Einsatz von KI-Systemen können Aufgaben schneller und präziser erledigt werden, was zu einer Steigerung der Produktivität und Effizienz führt. Dies kann insbesondere in produzierenden Unternehmen von Vorteil sein, da hier oft repetitive Aufgaben anfallen, die von KI-Systemen übernommen werden können.

Ein weiterer Vorteil von KI im Arbeitsmarkt ist die Schaffung neuer Arbeitsplätze. Durch den Einsatz von KI-Systemen entstehen nicht nur neue Aufgaben im Bereich der Entwicklung und Wartung von KI-Systemen, sondern auch in anderen Bereichen, die von der Automatisierung profitieren. So können beispielsweise in der medizinischen Diagnose oder der Finanzbranche neue Arbeitsplätze durch KI entstehen.

Risiken von künstlicher Intelligenz

Allerdings birgt der Einsatz von KI im Arbeitsmarkt auch Risiken. Eine Gefahr besteht darin, dass bestimmte Berufsgruppen durch KI-Systeme ersetzt werden. Dies kann insbesondere bei einfachen und routinemäßigen Aufgaben der Fall sein. Ein Beispiel hierfür sind Callcenter-Mitarbeiter, die durch KI-Systeme ersetzt werden können.

Ein weiteres Risiko besteht darin, dass KI-Systeme Entscheidungen treffen können, die für Menschen nicht nachvollziehbar sind. Dies kann zu Problemen im Bereich der Verantwortung und Haftung führen.

KI im Arbeitsmarkt am Beispiel der Automobilindustrie

Bild via Pixabay (CC Lizenz)

Die Automobilindustrie hat in den letzten Jahren stark von der KI profitiert. Einige der Auswirkungen der KI in der Automobilindustrie sind:

  • Verbesserung der Fahrsicherheit durch den Einsatz von Technologien wie autonomes Fahren und Fahrerassistenzsystemen.
  • Erhöhung der Effizienz durch den Einsatz von KI in Produktionsprozessen und Supply Chain Management.
  • Entwicklung von personalisierten Angeboten durch den Einsatz von KI in der Vermarktung und im Kundenservice.
  • Reduktion der Emissionen durch den Einsatz von KI-Systemen zur Optimierung des Kraftstoffverbrauchs und der Abgasemissionen.
  • Entwicklung neuer Geschäftsmodelle durch den Einsatz von KI in Car-Sharing-Diensten und anderen innovativen Mobilitätslösungen.

Es ist wichtig zu beachten, dass die Auswirkungen von KI in der Automobilindustrie auch negative Aspekte haben, wie zum Beispiel den Verlust von Arbeitsplätzen durch Automatisierung und die Herausforderungen, die mit der Einführung von autonomen Fahrzeugen einhergehen, wie zum Beispiel die Regulierung und die ethischen Implikationen.

Fazit

Insgesamt lässt sich sagen, dass der Einsatz von KI im Arbeitsmarkt sowohl Chancen als auch Risiken birgt. Um diese Risiken abzufedern, ist es wichtig, dass Unternehmen und Regulierungsbehörden eng zusammenarbeiten, um sicherzustellen, dass der Einsatz von KI im Arbeitsmarkt sinnvoll gestaltet wird. Dies kann beispielsweise durch die Schaffung von Weiterbildungsmaßnahmen für betroffene Berufsgruppen erreicht werden, um ihnen den Übergang in andere Berufe zu erleichtern. Es ist auch wichtig, dass Unternehmen ihre Verantwortung im Umgang mit KI-Systemen wahrnehmen und sicherstellen, dass diese ethisch und sozial verantwortungsvoll eingesetzt werden.

Außerdem, müssen wir uns auf die Tatsache einstellen, dass KI-Systeme die Arbeitswelt verändern werden und dass es wichtig ist, uns darauf vorzubereiten. Dies bedeutet, dass wir uns auf die Auswirkungen von KI auf den Arbeitsmarkt vorbereiten müssen und uns Gedanken darüber machen, wie wir sicherstellen können, dass die Vorteile von KI die Risiken aufwiegen.

Quellen

Apt, Wenke; Priesack, Kai (2019): KI und Arbeit – Chance und Risiko zugleich. Online unter https://link.springer.com/chapter/10.1007/978-3-662-58042-4_14#:~:text=Die%20einen%20gehen%20von%20massiven,damit%20die%20Arbeitsqualit%C3%A4t%20zu%20verbessern. [Abgerufen am 28.01.2023]

De Cremer, David; Kasparov Garry (2021): AI Should Augment Human Intelligence, Not Replace It. Online unter https://hbr.org/2021/03/ai-should-augment-human-intelligence-not-replace-it [Abgerufen am 27.01.2023]

Giering, Oliver (2021): Künstliche Intelligenz und Arbeit: Betrachtungen zwischen Prognose und betrieblicher Realität. Online unter https://link.springer.com/article/10.1007/s41449-021-00289-0 [Abgerufen am 25.01.2023]

McKinsey Global Institute (2018): How artificial intelligence and data add value to businesses. Online unter https://www.mckinsey.com/featured-insights/artificial-intelligence/how-artificial-intelligence-and-data-add-value-to-businesses [Abgerufen am 27.01.2023]

KI-Bots und Meinungsmache in Sozialen Medien

Autor*in: DB

Inhaltsverzeichnis

  • Ein tragisches Beispiel
  • Zusammenhang
  • Ferngesteuerte Demonstrationen
  • Der Hass nimmt zu!
  • Einen Blick in die Vergangenheit
  • Bot-Produktion
  • Wie erkenne ich einen Bot?

Ein tragisches Beispiel

In einem TikTok-Video berichtet eine etwa 30-jährige Frau von einem tragischen Vorfall.

Ein 16 Jahre alter Junge namens Daniel engagierte sich ehrenamtlich in einer Flüchtlingsunterkunft. Als Daniel jedoch in Gegenwart der ukrainischen Flüchtlinge russisch sprach, wurden einige von ihnen aggressiv und schlugen den Jungen zusammen. Dieser starb an seinen Verletzungen. Die Täter wurden straffrei zurück in ihre Unterkunft geschickt.

Die Frau berichtete in Ihrem Video den Vorfall sehr detailliert und emotional. Sie brach in Tränen aus und verstand nicht, wie so etwas passieren konnte.

Was geht in Ihnen vor, wenn Sie das lesen? Verwirrung? Wut? Mitleid? Es ist ganz normal, dass man einem so aufrichtigen Statement zunächst erst einmal Glauben schenkt und nicht weiter hinterfragt.

Die Rede ist von dem Mord in Euskirchen, der nie stattgefunden hat.

Die Bundespolizei NRW bezieht zeitnah Stellung zum geschilderten Vorfall.

Zahlreiche Nachrichtenagenturen berichten von dieser Falschmeldung, wie z.B. die Frankfurter Allgemeine[1], t-online[2] und der ZDF[3].

Zusammenhang

Doch was hat der Gefühlsausbruch der TikTokerin mit KI-Bots zu tun?

Die Dame, die die o.g. Falschmeldung verbreitet hat, erklärte, sie habe diese Information über mehrere Ecken erfahren und hätte selbst fest geglaubt, dass es wahr sei. Sie hat also in erster Linie darauf vertraut, dass eine Meldung, die Freunde von ihr teilten, wahr sein müsste und deshalb nicht auf ihren Wahrheitsgehalt überprüft werden müsse.

Ferngesteuerte Demonstrationen

Am 21. Mai 2016 fand eine größere Demonstration gegen die Islamisierung in Texas statt. Diese wurde von der Facebook-Gruppe “Heart of Texas” organisiert. Dem entgegen organisierte die Gruppe “United Muslims of America“ einen Gegenprotest[4].

Durch diese Positionierung wurde das politische Augenmerk auf das Thema Muslime gelenkt und andere Themen verschwanden aus dem Fokus.

Aber ausgelöst und organisiert wurden die Demos pro und kontra Muslime von Menschen, bzw. Rechnern, die in Petersburg stehen. Es wurde keiner der Organisatoren vor Ort gesichtet, weil alles inszeniert war. 

Es versammelten sich echte Menschen, weil für sie relevante Themen angesprochen, verschärft und anschließend durch Social-Bots kommentiert, geteilt und geliked werden. So werden sie gesehen und je mehr Interaktion stattfindet, desto offizieller kommt die Information beim Konsumenten an.

Der Hass nimmt zu!

(Landesanstalt für Medien Nordrhein-Westfalen. (4. Juli, 2018). Wie häufig haben Sie persönlich schon Hassrede bzw. Hasskommentare im Internet gesehen? [Graph]. In Statista. Zugriff am 31. Januar 2023, von https://de.statista.com/statistik/daten/studie/808263/umfrage/umfrage-zur-wahrnehmungshaeufigkeit-von-hasskommentaren-im-internet-nach-alter/ )[5]

Hasskommentare sind ebenfalls ein fester Bestandteil von Social-Bots. Oft sind diese sehr polarisiert, wenig kreativ und schnell verfasst. Ihr Ziel ist es, Vertreter einer ungeteilten Meinung zum Schweigen zu bringen. Selbst vor Morddrohungen wird nicht zurückgeschreckt.

Einen Blick in die Vergangeneit

Es ist in Ordnung, anderer Meinung zu sein. Aber warum gibt sich jemand die Mühe, mehrere Menschen zu beschäftigen, damit sie ausgewählte Nachrichten teilen, oder gegen bestimmte Personen anzugehen?

Häufig wird bei den organisierten Troll-Aktionen auch von Propaganda gesprochen.[6]

So ähnlich wurde bereits der zweite Weltkrieg eingeläutet. Durch Falschmeldungen hatte man glauben lassen, dass Polen Deutschland angegriffen habe und dass der erste Angriff lediglich eine Gegenmaßnahme sei .[7] In der damaligen Zeit konnte man noch nicht so einfach wie heute durch das Internet überprüfen, wie hoch der Wahrheitsgehalt einer Nachricht sein kann. Jedoch ist es heute umso leichter eine Falschmeldung zu verbreiten und jeder Rechercheaufwand ist eben mit einem Aufwand verbunden.

Doch das Ziel solcher Aktionen wird mit einem Vergleich klar. Der Hintergrund von Fake-News ist die Lenkung von politischen Positionen.

Bot-Produktion

Nun wurden in diesem Artikel oft die “Social-Bots” genannt. Aber woher kommen diese Social Bots und wie viel Mensch und wie viel KI steckt dahinter?

Zunächst werden Bots von einem Menschen erstellt und mit verschiedenen Accounts versorgt. Ein Algorithmus mit typischen wenn-dann-Abfolgen lässt diese dann auf Sozialen Netzwerken interagieren. Bestimmte Wörter triggern diese Bots zu vorgeschrieben Ineratkionen, wie einem Kommentar, einem Like oder das Teilen bestimmter Beiträge.[8]

Nicht alle werden dafür genutzt, Meinungen zu manipulieren. Viel häufiger werden Social-Bots zu Marketing-Zwecken genutzt. Die einfachste Form ist, einen Anbieter entsprechender Bots dafür zu bezahlen, um eine erste Followerschaft zusammenzustellen. Das heißt, dass mehrere Hundert Fake-Accounts einem Unternehmen folgen und mit Beiträgen interagieren. Diese Interaktion ist zwar nicht komplex, reicht aber, um eine gewisse Nachfrage und Bekanntheit vorzugaukeln und den Algorithmus der Plattform zu triggern, wodurch die eigenen Beiträge öfter von verschiedenen Menschen gesehen werden.

Wie erkenne ich einen Bot?

Ein Erfolgsrezept existiert leider nicht.

Aber obwohl man es niemals wirklich wissen kann, gibt es ein paar Anhaltspunkte, an denen man sich orientieren kann. Wie allgemein ist die Account-Beschreibung gehalten und wie neu ist der betreffende Account? Bei prominenten Persönlichkeiten gibt es Merkmale zur Verifizierung, wie es den blauen Haken bis vor kurzem bei Twitter gab. Wenn ein Account neu ist und sehr viel Zeit nur mit dem Verfassen von Kommentaren und dem Teilen von Beiträgen verbringt, ist es ein weiteres Indiz, dass ein Social-Bot dahinterstecken könnte. Manchmal ist ein Antworttext in sekundenschnelle Geschrieben, obwohl man so aktiv ist und Lesen und Verfassen i.d.R. mehr Zeit in Anspruch nehmen müsste. Zudem scheitert ein Bot, wenn eine Unterhaltung komplexer wird, da die geschriebenen Programme nicht jede Eventualität, die ein Gespräch einschlagen kann, berücksichtigen.[9]