Wie beeinflusst digitale Datenanalyse die Transparenz von Daten?

Autorinnen: Luisa Rabbe und Emelie Rademacher


Die zunehmend komplexe Gestaltung digitaler Angebote und Dienste in den letzten Jahren hat starke Konzentrationstendenzen in der Datenökonomie verursacht. Einige Großunternehmen sammeln beträchtliche Datenmengen, kombinieren diese und werten die neuen Daten aus.[1] Dadurch können anonymisierte Daten häufig re-identifiziert werden.[2] Was hat das nun mit digitaler Datenanalyse zu tun?

In diesem Fachbeitrag wird auf die Nutzung digitaler Daten eingegangen. Es wird erklärt was unter digitaler Datenanalyse und Datentransparenz verstanden wird und wie diese Einfluss auf die Arbeitswelt haben. Weiterhin wird betrachtet, wie der Staat Einfluss auf die Transparenz von Daten nimmt.

Inhaltsverzeichnis

Digitale Daten werden über alle elektronischen Endgeräte verknüpft

Die Nutzung digitaler Daten

Privatpersonen, Unternehmen und der Staat. Jeder Akteur der Marktwirtschaft verwendet täglich digitale Daten. Aber was sind digitale Daten? Bei digitalen Daten handelt es sich um digitale Dokumente und Medieneinheiten, die diskret oder indiskret Informationen darstellen. Diese Informationen können sowohl personenbezogene als auch nicht personenbezogene Daten sein. Wie kann nun mit diesen Daten umgegangen werden? Die Datennutzung ist immer eng verbunden mit Fragen zum verantwortungsvollen Umgang mit Daten und den sich dauerhaft weiterentwickelnden Technologien. Besonders wichtig sind dabei die Einhaltung von Gesetzen, wie die DSGVO, und die Orientierung an ethischen Werten. „[N]icht alles, was technisch möglich ist, [ist] auch ethisch vertretbar“[3], denn es gibt unter anderem Möglichkeiten über die Verfahren Profiling und Scoring Aussagen über das Verhalten sowie die Präferenzen einzelner Personen machen zu können und diese zu beeinflussen.[4]

Digitale Datenanalyse und Datentransparenz

Digitale Datenanalysen helfen, komplexe Sachverhalte schnell und transparent darzustellen. Dies geschieht durch das Erkennen von Zusammenhängen, Abhängigkeiten und Ungereimtheiten in Daten. Zur Datenanalyse wird vermehrt auf maschinelles Lernen anstatt auf Menschen zurückgegriffen, da bei der Analyse großer Datenmengen in kürzerer Zeit bessere Ergebnisse erzielt werden können.[5]

Transparenz setzt voraus, dass Daten fehlerfrei, vollständig sowie zeitgerecht veröffentlicht und zugänglich sind. Zugleich dient sie als Voraussetzung für die Überwachung der Datennutzung. Dies wird möglich durch die Kontrolle der Datenverwendung durch alle Personen, die Zugang zu den jeweiligen Daten haben und die Fähigkeiten zur differenzierten Datenanalyse besitzen.[6]

Einfluss der digitalen Datenanalyse auf die Arbeitswelt

Digitale Datenanalyse und Datentransparenz haben einen bedeutenden Einfluss auf die Arbeitswelt. Durch die Verfügbarkeit von genauen und umfassenderen Daten können Unternehmen datengetriebene Entscheidungen treffen. Das bedeutet, dass sie Entscheidungen auf der Grundlage von Daten und nicht nur auf Intuition oder Vermutungen treffen. Dies führt zu besseren Entscheidungen, die auf den tatsächlichen Bedürfnissen und Trends des Marktes basieren.[7]

Darüber hinaus können Unternehmen durch die Verwendung von Datentransparenztools ihre Geschäftsprozesse besser überwachen und regulieren. Dies bedeutet, dass sie in Echtzeit Einblicke in ihre Prozesse erhalten und mögliche Probleme schnell erkennen und beheben können. Somit können die Effizienz gesteigert und Kosten eingespart werden. Außerdem sorgt dies für eine bessere Kontrolle und Überwachung von Geschäftsprozessen. Zusätzlich ermöglicht digitale Datenanalyse und die Nutzung von Datentransparenztools Unternehmen dazu, große Mengen an Daten schneller und effizienter zu analysieren. Dies führt zu einer besseren Entscheidungsfindung und höheren Effizienz.

Insgesamt hat die Verwendung von digitaler Datenanalyse und Datentransparenz einen signifikanten Einfluss auf die Arbeitswelt, indem sie Effizienz, datengetriebene Entscheidungen und Überwachung von Geschäftsprozessen verbessern.[8]

Die Rolle des Staates in der digitalen Datenanalyse

Der Staat spielt eine wichtige Rolle bei der Steuerung der Verwendung von Datenanalyse und Datentransparenz. Durch Gesetze und Regulierungen, wie die Datenschutzgrundverordnung (DSGVO) in Europa, wird sichergestellt, dass persönliche Daten sicher und geschützt sind und das Unternehmen verantwortungsvoll mit diesen Daten umgehen.[9]

Zudem legt der Staat Richtlinien fest, die Unternehmen verpflichten, bestimmte Standards bei der Datensammlung, -verarbeitung und -nutzung einzuhalten. Dies garantiert, dass Daten genau und verlässlich sind und die Datentransparenz ein hohes Niveau hat. Der Staat ist auch verantwortlich für die Überwachung der Einhaltung dieser Gesetze und Regelungen durch Unternehmen. Dies kann durch Regulierungsbehörden oder durch Strafen und Bußgelder bei Verstößen geschehen.[10]

Darüber hinaus sind staatliche Stellen selbst oft Nutzer von Datenanalyse, beispielsweise für staatliche Überwachungs- und Überprüfungszwecke oder für die Erstellung von Statistiken.[11] Hierbei muss jedoch sichergestellt werden, dass dies im Rahmen der Gesetze und Regulierungen geschieht und die Datenrechte der Bürger geschützt bleiben. Zudem kann der Staat Regulierungen erlassen, die den Zugang zu bestimmten Daten einschränken, um die Privatsphäre und den Schutz sensibler Daten zu garantieren. Dies garantiert, dass Daten nicht missbraucht werden und das die Transparenz der Daten aufrechterhalten wird. Weiterhin können Unternehmen vom Staat verpflichtet werden, Regeln für den Umgang mit Daten und den Schutz persönlicher Informationen einzuhalten.[12]

Beispielsweise kann der Staat Gesetze erlassen, die Unternehmen verpflichten, über die Daten, die sie sammeln, transparent zu informieren. Dies kann die Verwendung von Daten, die Art und Weise, wie sie gesammelt werden und wer Zugang dazu hat, umfassen.[13] Außerdem muss der Staat auf die Entwicklungen im Bereich der digitalen Datenanalyse reagieren und gegebenenfalls Gesetze und Regulierungen anpassen, um sicherzustellen, dass sie weiterhin gültig und wirksam bleiben.[14]

Fazit

Zusammenfassend ist zu erkennen, dass sowohl digitale Datenanalyse als auch Datentransparenz für sich genommen bedeutend für jeden Akteur der Marktwirtschaft sind. Besonders deutlich wird allerdings auch, dass die Datenanalyse einen sichtbaren Einfluss auf die Transparenz von Daten nimmt. Nur wenn Daten durch Analyseverfahren verstanden werden, können sie auch verwendet werden. Sie sind dann transparent. Dabei darf die Notwendigkeit von Gesetzen und Regulierungen nicht vernachlässigt werden, um die Rechte des Einzelnen zu schützen.


Begriffsdefinitionen

Nicht personenbezogene Daten

Als nicht personenbezogene Daten werden alle Daten bezeichnet, die keine personenbezogenen Daten aufweisen oder stark genug anonymisiert worden sind, dass die Anonymisierung nicht rückgängig gemacht werden kann.[15]

Personenbezogene Daten

Personenbezogenen Daten bezeichnen alle Daten und Informationen, die auf eine lebende identifizierte oder identifizierbare Person verweisen. Darüber hinaus werden auch pseudonymisierte Daten, anonymisierte Daten, die re-identifiziert werden können, als personenbezogene Daten bezeichnet.[16]

Profiling

Bei dem Verfahren Profiling findet das Sammeln und Verknüpfen von personenbezogenen Daten zu persönlichen Profilen von einzelnen Menschen statt. Diese Profile werden dann zur Auswertung, Bewertung, Analyse und Vorhersage spezifischer Merkmale von Personen verwendet.[17]

Scoring

Das statistisch-mathematische Verfahren Scoring ordnet dem Profil eines Menschen oder Unternehmens einen Wert zu. Dieser Wert zeigt die Intensität der Ausprägung verschiedener Merkmale und wird zur Kategorisierung und Klassifizierung verwendet.[18]


[1] Vgl. Die Bundesregierung (2021), S. 6
[2] Vgl. Günter (2020), S. 62
[3] Die Bundesregierung (2021), S. 7
[4] Vgl. Ebd., S. 7
[5] Vgl. Lucke; Gollasch (2022), S. 96
[6] Vgl. Günter (2020), S. 201
[7] Vgl. Kämpf, Vogl, Boes (2022)
[8] Vgl. Küng, Keller, Hofer (2022)
[9] Vgl. Wewer (2022)
[10] Vgl. Kubicek (2020)
[11] Vgl. Fulko (2021)
[12] Vgl. Fischer, Kraus (2020)
[13] Vgl. Kubicek (2020)
[14] Vgl. Fischer, Kraus (2020)
[15] Vgl. Europäische Kommission (2014)
[16] Vgl. Ebd.
[17] Vgl. Die Bundesregierung (2021), S. 116
[18] Vgl. Ebd., S. 116


Über die Autorinnen

Luisa Rabbe ist im dritten Semester des Studienganges Informationsmanagement immatrikuliert. Das Studium absolviert diese an der Fakultät III in der Abteilung Information und Kommunikation an der Hochschule Hannover. Die Autorin ist 24 Jahre alt und wohnhaft in Hannover.

Emelie Rademacher ist im dritten Semester des Studienganges Informationsmanagement immatrkuliert. Das Studium absolviert diese an der Fakultät III in der Abteilung Information und Kommunikation an der Hochschule Hannover. Gleichzeitig arbeitet sie als Minijobberin bei der Edeka Cramer GmbH im Bereich Backwaren Bedienung. Die Autorin ist 20 Jahre alt und wohnhaft in Hannover.


 

Quellenverzeichnis

Die Bundesregierung (2021): Datenstrategie der Bundesregierung. Eine Innovationsstrategie für gesellschaftlichen Fortschritt und nachhaltigen Wachstum. Online unter https://www.bundesregierung.de/breg-de/suche/datenstrategie-der-bundesregierung-1845632 [Abruf am 28.01.2023]

Europäische Kommission (2014): Was sind personenbezogene Daten? Online unter https://commission.europa.eu/law/law-topic/data-protection/reform/what-personal-data_de [Abruf am 29.01.2023]

Fischer, Caroline; Kraus, Sascha (2020): Digitale Transparenz. In: Klenk, Tanja; Nullmeier, Frank; Wewer, Göttrik (Hg.): Handbuch Digitalisierung in Staat und Verwaltung. Wiesbaden: Springer VS, S.159-170

Fulko, Lenz (2021): Der digitale Staat – Transparenz als Digitalisierungsmotor. Argumente zu Marktwirtschaft und Politik, No. 155. Berlin: Stiftung Marktwirtschaft

Kämpf, Tobias; Vogl, Elisabeth; Boes, Andreas(2022): Inverse Transparenz. Ein soziologischer Perspektivenwechsel für einen nachhaltigen Umgang mit Transparenz in der digitalen Arbeitswelt. In: Boes, Andreas; Hess, Thomas; Pretschner, Alexander; Kämpf, Tobias; Vogl, Elisabeth (Hg.): Daten-Innovation-Privatheit. Mit Inverser Transparenz das Gestaltungsdilemma der digitalen Arbeitswelt lösen. München: ISF München, S.24-33

Kubicek, Herbert (2020): Informationsfreiheits- und Transparenzgesetze. In: Klenk, Tanja; Nullmeier, Frank; Wewer, Göttrik (Hg.): Handbuch Digitalisierung in Staat und Verwaltung. Wiesbaden: Springer VS, S.171-186

Küng, Marco; Keller, Daniel F.; Hofer, Nicolas(2022): Transport – Im Wandel der Corona-Kriese. In: Luban, Katharina; Hänggi, Roman (Hg.): Erfolgreiche Unternehmensführung durch Resilienzmanagement. Branchenübergreifende Praxisstudie am Beispiel der Corona-Kriese. Berlin: Springer Vieweg, S. 181-196

Lucke, Jörn von; Gollasch, Katja (2022): Offene Daten und offene Verwaltungsdaten –  Öffnung von Datenbeständen. In: Hünemohr, Holger; Lucke, Jorn von; Stember, Jürgen; Wimmer, Maria A. (Hg.): Open Government. Offenes Regierungs- und Verwaltungshandeln – Leitbilder, Ziele und Methoden. Wiesbaden: Springer Gabler, S. 49-73

Müller, Günter (2020): Protektion 4.0: Das Digitalisierungsdilemma. Die blaue Stunde der Informatik. Berlin: Springer Vieweg

Wewer, Göttik (2020): Datenschutz. In: Klenk, Tanja; Nullmeier, Frank; Wewer, Göttrik (Hg.): Handbuch Digitalisierung in Staat und Verwaltung. Wiesbaden: Springer VS, S.187-198

Alle Bilder unterliegen der Pixabay-Lizenz