Der Einsatz von Spracherkennungssoftware und ihre Grenzen in der Forensischen Linguistik

Autorin: Kimberley Stips

Alexa, wer hat versucht, uns zu erpressen?
Ganz so leicht ist es dann doch nicht. Die Forensische Linguistik ist eine kriminalistische Hilfswissenschaft, die sich mit Sprache im gerichtlichen Kontext beschäftigt. Dazu zählen sowohl die vor Gericht verwendete Sprache wie auch beispielsweise die Autoren- und Sprechererkennung (Fobbe, S. 15 f.). Oder, um es mit den Worten von Patrick Rotter, selbst in der Forensischen Linguistik tätig, zu sagen: „Für uns Sprachprofiler ist Sprache in erster Linie Identität. Egal ob gesprochen oder geschrieben. Sie ist ein Teil von uns.“ (Rotter, S. 15)
Um Identität(-sfindung) soll es in diesem Beitrag gehen – und um die Frage, wie sehr die Künstliche Intelligenz (KI) in diesem Bereich Ermittler*innen entlasten oder vielleicht sogar ersetzen kann.

Entwicklung der Spracherkennung

Der Versuch, Sprache mittels Computern zu analysieren und zu erkennen, ist nicht neu:

Zeitleiste: Meilensteine der computergestützten Spracherkennung

Was aber, wenn es nicht nur darum geht, kurze Nachrichten in Text zu verwandeln, sondern etwa herauszufinden, wer eine anonyme Drohbotschaft versendet hat? In den letzten Jahren gab es mehrere Studien dazu, von denen ich hier zwei vorstellen möchte.

Software & Audioerkennung

Mit Spracherkennung von komplexeren Audiodateien hat sich unter anderem Franz Bellmann in seiner Bachelorarbeit beschäftigt: er testete sechs frei verfügbare Softwares auf die Eignung zur Transkription von Audiodateien (mit verschiedenen Längen, in verschiedenen Sprechgeschwindigkeiten und mit und ohne Dialekt) in einem polizeilichen Kontext (Bellmann, S. 23). Wie seinen Schlussfolgerungen zu entnehmen ist, haben alle benutzten Programme Schwierigkeiten bei der Worterkennung, Google Web Speech API hat sich am besten geschlagen (Bellmann, S. 47). Doch selbst diese beste Alternative hat immer noch eine Fehlerrate von ca. 30%(!) bei der Transkription (Bellmann, S. 44).

Software & Textzuordnung

Manuel Dorobek untersuchte in seiner Masterarbeit 2021 ein ähnliches Projekt, aber auf geschriebene Texte bezogen: kann die KI im Internet veröffentliche Rezensionen zuverlässig den jeweiligen Autor*innen zuordnen? Er wählte 25 Autor*innen mit jeweils 100 verfassten Texten aus (Dorobek, S. 25), die vom besten Modell mit einer Genauigkeit von 96,4% erkannt wurden (Dorobek, S. 149). Zum Trainieren der KI wurden 60 Vorlagetexte genutzt (Dorobek, ebd.). Zwei Autor*innen voneinander zu unterscheiden, gelang schon mit drei Vorlagen (Dorobek, ebd.). Das sind sehr gute Werte, doch in der echten Welt ist der Kreis der Verdächtigen nicht immer so leicht eingrenzbar. Außerdem kann es sein, dass nicht genug Vergleichstexte vorliegen oder keine Texte in ausreichender Länge – weshalb auch Dorobek selbst zu dem Ergebnis kommt: „Für einen Anwendungsfall in der Praxis sind diese Ergebnisse deshalb mit Vorsicht zu betrachten.“ (Dorobek, ebd.)

Fazit

KI kann also bisher beim geschriebenen Wort besser unterstützen als beim gesprochenen. Bis die Technik weit genug entwickelt ist, um gerichtsfeste Ergebnisse zu liefern – denn immerhin geht es hier auch um Straftaten und die Frage, ob Menschen ins Gefängnis kommen! – wird also noch einige Zeit vergehen. Bis dahin gilt die Einschätzung von Patrick Rotter:

„Unsere Lebensleistung an Wort und Text ist schlicht nicht zu erfassen. Und dank der zwangsläufigen Veränderungen auch nicht in starre Muster zu packen. […] Keine künstliche Intelligenz dieser Welt ist in der Lage, sämtliche Dialekte, feinste Nuancen und die ständigen Veränderungen in der Sprache zu begreifen.“ (Rotter, S. 40)

Quellen

Fobbe, Eilika (2011): Forensische Linguistik. Tübingen: Narr Francke Attempto Verlag
Rotter, Patrick (2021): Die geheimen Muster der Sprache. 3. Auflage, München: Redline-Verlag
Bellmann, Franz (2020): Prototypische Systemintegration und Evaluation von Open Source Sprachmodellen zur automatischen Spracherkennung gesprochener deutscher Texte. Online-Ressource, abrufbar unter BA Bellmann
Dorobek, Manuel (2021): Automatisierte Autorschaftsanalyse in der deutschen Sprache mittels forensischer Linguistik. Online-Ressource, abrufbar unter MA Dorobek
Bildquelle: Wedekind, Kai: HTML 5 Speech Recognition API. Online abrufbar unter https://miro.medium.com/v2/resize:fit:1100/format:webp/1*iYxrR4zaECeQ5AgSq3jy_A.png
Beitragsbild: mohammed_hassan auf Pixabay. Online abrufbar unter https://pixabay.com/images/id-7620463/