Data Mining bei der Warenkorbanalyse

WebLab HsH: Data Mining und Warenkorbanalyse

Autori*nnen: Judith Hauschulz und Verena-Christin Schmidt

Oder: Werden Windeln und Bier wirklich oft zusammen gekauft?

Die Warenkorbanalyse gehört zum Data Mining und ist ein Anwendungs-gebiet der Assoziationsanalyse. Wenn du diese Begriffe hörst, ist dir wahrscheinlich klar, dass es um Daten geht. Aber das klingt nun vielleicht etwas trocken, deshalb fangen wir nochmal neu an:

    • Du wolltest schon immer wissen, warum Data Mining Beispiel: Bier und Windelndir beim Online-Shopping “passende” Artikel vorgeschlagen werden?
    • Dich interessiert, wieso sich die Süßigkeiten im Supermarkt immer auf dem Weg zur Kasse befinden?
    • Oder du willst einfach endlich erfahren, was da eigentlich dahintersteckt?

Dann bist du hier genau richtig! Wir erklären dir, wie das funktioniert. Doch dazu fangen wir erst einmal beim Allgemeinen an: dem Data Mining.

Was bedeutet Data Mining?

Eigentlich heißt Data Mining nur „Datenschürfen“. Dabei soll aus Daten Wissen erzeugt werden.1 Mit Wissen ist hier ein Muster gemeint, das für NutzerInnen interessant ist oder auch interessant sein kann. Ein Muster besteht dann wiederum aus Beziehungen zwischen Daten oder Regelmäßigkeiten und wird Datenmustererkennung genannt. 2

In der Graphik kannst du den Ablauf des Data Minings ablesen. Das Ganze stellt einen Prozess dar, bei dem das Ziel ist, dass man neue Erkenntnisse gewinnt. Dabei beschränkt man zuerst eine große Menge an Rohdaten auf eine kleinere Auswahl, sodass sie anschließend verarbeitet werden können. So dienen sie also als Grundlage für die Muster, die das Data Mining aufdecken soll.3

Rohdaten - Zieldaten - Inputdaten - Data Mining - Interpretation - WissenAbb.: Von den Rohdaten zum Wissen

Es gibt sehr viele Verfahren im Data Mining. Wir erklären dir aber nur die Assoziationsanalyse, weil sie relevant für die Analyse von Waren ist. Sie zählt zu den bekannteren beziehungsweise typischen Methoden des Data Minings.4

Assoziationen im Data Mining

"Die Assoziationsanalyse gehört zu einem der grundlegendsten Verfahren in der Datenanalyse und spielt im wirtschaftlichen Bereich eine große Rolle." 5

Mit der Assoziationsanalyse kannst du Abhängigkeiten und Zusammenhänge in großen Datenmengen ermitteln. Dazu benutzt man sogenannte Items. Stell sie dir am besten wie Produkte im Supermarkt vor! Mit diesen Items können wir dann Berechnungen durchführen. Wir könnten also schauen, ob zwei von ihnen auffällig oft gemeinsam vorkommen.

Es kann aber auch passieren, dass ein Item besonders dann auftritt, wenn ein anderes Item vorhanden ist. Ein Item kann sogar das Vorkommen eines anderen Items begünstigen. Wenn das eintritt, lassen sich da-raus Assoziationsregeln ableiten.1 Aus ihnen können wir beispielsweise Vorhersagen treffen oder Empfehlungen aussprechen.

Als Ergebnis erhalten wir Regeln, die folgende Form haben:

"Wenn Item A vorliegt, dann tritt in X Prozent
der Fälle auch Item B auf.
"6

Diese Regeln der Assoziationsanalyse können wir benutzen, um zum Beispiel Wechselwirkungen verschiedener Medikamente zu erforschen. Und auch wenn man Zusammenhänge bei der Wahl von Anlageformen bei Banken aufdecken möchte, ist sie nützlich.7 Ein wesentlich bekannteres Beispiel ist aber die Empfehlung von Artikeln im Online-Handel. Wenn wir einen Artikel aufrufen, dann zeigt uns die Seite oft, was andere KundInnen noch gekauft haben.8 Solche Vorhersagen lassen sich auch aufgrund von Warenkorbanalysen treffen.

Warenkorbanalyse mit Bier und Windeln

In einer Folge der SerieNumb3rs – Die Logik des Verbrechens geht es um ein beliebtes Beispiel der Warenkorbanalyse. Windeln und Bier werden hier sehr oft zusammen gekauft. Auch wenn es erstaunlich erscheint, so haben sie eine logische Erklärung dafür: Männer, die von ihren Frauen zum Windelkauf aufgefordert werden, kaufen gerne noch Bier dazu. Damit haben sie etwas, worauf sie sich nach der „Arbeit mit dem Kind“ freuen und was sie genießen können. Darum kommt es zu dem Ergebnis, dass das Bierregal auf dem Weg von den Windeln zur Kasse platziert und so der Umsatz gesteigert wird.9

Die Warenkorbanalyse unter den Data Mining-Verfahren

Bei der Warenkorbanalyse wertet man die Einkäufe von KundInnen aus, um dadurch verschiedene Items zu untersuchen. Die Items bestehen hier aus den Artikeln von zum Beispiel Supermärkten. Alle Kaufaktionen zusammengefasst ergeben die Datenbasis.7

Fast alle Unternehmen, die Waren verkaufen, haben die Daten, die für das Data Mining mit der Warenkorbanalyse nötig sind. Schon einige Kassenbons reichen aus und es wird kein spezielles System benötigt. Damit lassen sich dann stark nachgefragte Produkte ermitteln oder Verbindungen zwischen verschiedenen Waren untersuchen.10 Mit der Analyse können wir also auch erfahren, wie oft ein Produkt mit einem anderen im Warenkorb landet. Um dabei die „Spreu vom Weizen“ zu trennen, werden Assoziationsregeln erstellt.11 Aber wie können wir denn nun Muster finden?

Einkaufswagen Warenkorb EinkaufslisteWenn Menschen Lebensmittel einkaufen gehen, haben sie meistens eine Einkaufsliste dabei, damit sie nichts vergessen. Auf manchen Listen befinden sich viele gesunde Produkte, wohingegen auf anderen eher Bier und Chips stehen. Daraus können wir schon Muster erkennen, durch die sich die Waren im Supermarkt entsprechend sortieren lassen.12

Werden Bier und Windeln wirklich oft zusammengekauft?

Wenn wir Zusammenhänge und Abhängigkeiten berechnen wollen, müssen wir (leider) etwas mathematisch werden. Aber keine Angst, wir benutzen dafür ein leicht verständliches und nachvollziehbares Beispiel.

Zuerst brauchen wir die drei Kennzahlen Support, Konfidenz und Lift. In der Tabelle steht ein Beispiel, dass dir helfen wird, um diese Kennzahlen zu verstehen. Bei uns geht es lediglich um zwei Produkte. Insgesamt untersuchen wir hier aber 1.000.000 Transaktionen beziehungsweise Einkäufe. Darin kommen auch 200.000-mal der Kauf von Bier und 50.000-mal der Kauf von Windeln vor. Die KundInnen dieses Supermarkts haben Bier und Windeln sogar 20.000-mal gleichzeitig gekauft.

Anzahl Waren
1.000.000 Transaktionen insgesamt
200.000 Bier
50.000 Windeln
20.000 Windeln und Bier

Los geht die Warenkorbanalyse…

Wie oft werden Bier und Windeln denn nun zusammen gekauft? Um das zu erfahren, berechnen wir den Support. Dafür setzen wir zuerst die Anzahl der Käufe von Bier und Windeln separat ins Verhältnis aller vorliegenden Einkäufe. Danach machen wir das genauso mit der Anzahl der gemeinsamen Käufe, sodass wir einen Support von 2% erhalten.

Support Windeln Bier Warenkorbanalyse

Die Konfidenz sagt uns, wie oft eine Assoziationsregel („Wenn Bier gekauft wird, dann werden auch Windeln gekauft”) richtig ist. Sie gibt außerdem einen Hinweis darauf, wie stark der Zusammenhang zwischen Bier und Windeln ist.11

Wenn wir die Konfidenz berechnen wollen, brauchen wir die Support-Werte. Zu Beginn teilen wir dabei den gemeinsamen Support durch den einzelnen Support des Biers. Daraus ergibt sich eine Konfidenz von 10%. Weil das noch nicht besonders viel ist, drehen wir die Assoziationsregel einfach mal um. Somit ergibt sich eine Konfidenz von 40%, da nun die Anzahl der Windel-Einkäufe die Bezugsgröße darstellt.

Konfidenz Windeln Bier Warenkorbanalyse

Die zweite Regel zeigt also ein Muster auf, das der Supermarkt so nutzen kann: Wenn das Bier in Sichtweite der Windeln positioniert wird, dann wird beides häufiger zusammen gekauft werden.7

Ob der Kauf von Bier und Windeln nun wirklich zusammenhängt, verrät der Lift. Er sagt uns auch, um wieviel wahrscheinlicher Windeln den Kauf von Bier machen. Dafür müssen wir den gemeinsamen Support durch das Produkt der einzelnen Support-Werte teilen.

Lift Windeln Bier Warenkorbanalyse

Das Ergebnis ist ein Lift von 200%. Das heißt, dass der Kauf von Windeln die Wahrscheinlichkeit für den zusätzlichen Kauf von Bier sogar verdoppelt!

Zur Erklärung: Ein Lift von 100% würde stattdessen bedeuten, dass beide Items unabhängig voneinander sind. Bei einem Lift, der kleiner als 100% ist, ist es unwahrscheinlich ist, dass beide Items zusammen auftreten.11

Was bringt die Warenkorbanalyse?

Wie du siehst, ist es eigentlich doch ganz einfach, Muster und Abhängigkeiten zu entdecken. Wenn wir uns aber nicht nur mit zwei, sondern mit allen Artikeln eines Supermarkts beschäftigen würden, so wäre es deutlich schwieriger. Wir hätten dann ja viel mehr Daten, wodurch sich der Umfang der Berechnungen massiv erhöhen würde. Umso besser ist aber dadurch das Endergebnis. Aus einer großen und umfangreichen Warenkorbanalyse gewinnt man nämlich nicht nur ein paar Muster, sondern das gesamte Einkaufsverhalten der KundInnen. Das können Unternehmen für Dinge nutzen, wie zum Beispiel:

    • Regalplatzierungen
    • Preisgestaltung
    • Rabatt-Aktionen
    • zielgerichtetes Marketing12

Sobald Unternehmen die Warenkorbanalyse benutzen, geht es aber auch immer darum, das Angebot zu optimieren und den Umsatz zu steigern.10

Data Mining und Warenkorbanalyse

Gut aufgepasst? Überprüfe jetzt dein Wissen mit dem Quiz zum Data Mining mit der Warenkorbanalyse!

Wenn du mehr darüber erfahren willst, warum wir diesen Beitrag geschrieben haben, dann lies dir doch unser Konzept durch. Darin erklären wir auch, wie wir beim Verfassen von “Data Mining mit der Warenkorbanalyse” vorgegangen sind.

Quellenverzeichnis

1 vgl. Cleve, Jürgen; Lämmel, Uwe (2016): Data Mining. 2. Auflage. Berlin, Boston: De Gruyter Saur

2 vgl. Bissantz, Nicolas; Hagedorn, Jürgen (1993): Data Mining (Datenmustererkennung). In: Wirtschaftsinformatik Jg. 35, H. 5, S. 481–487

3 vgl. Reutterer, Thomas; Hahsler, Michael; Hornik, Kurt (2007): Data Mining und Marketing am Beispiel der explorativen Warenkorbanalyse. In: ZFP. Journal of Research and Management. Jg. 29., H. 3, S. 163-179

4 vgl. Beekmann, Frank (2003): Stichprobenbasierte Assoziationsanalyse im Rahmen des knowledge discovery in databases. Wiesbaden. Deutsche Universitäts-Verlag

5 Begerow, Markus u.a. (2019): Assoziationsanalyse. Online unter https://www.datenbanken-verstehen.de/lexikon/assoziationsanalyse/ [Abruf am 20.12.2019]

6 Beekmann, Frank (2003): Stichprobenbasierte Assoziationsanalyse im Rahmen des knowledge discovery in databases. Wiesbaden. Deutsche Universitäts-Verlag

7 vgl. Bankhofer, Udo; Vogel, Jürgen (2008): Datenanalyse und Statistik. Eine Einführung für Ökonomen im Bachelor. Wiesbaden: Gabler

8 vgl. Zaki, Mohammed J. ; Meira Jr., Wagner (2013): Data Mining and Analysis. Fundamental Concepts and Algorithms. Online unter https://repo.palkeo.com/algo/information-retrieval/Data%20mining%20and%20analysis.pdf [Abruf am 16.12.2019]

9 vgl. Swoyer, Stephen (2016): Beer and Diapers. The impossible correlation. Online unter https://tdwi.org/articles/2016/11/15/beer-and-diapers-impossible-correlation.aspx [Abruf am 17.12.2019]

10 vgl. Poliakov, Vladimir (2019): Data Science. Warenkorbanalyse in 30 Minuten. Online unter https://www.heise.de/developer/artikel/Data-Science-Warenkorbanalyse-in-30-Minuten-4425737.html [Abruf am 13.12.2019]

11 vgl.Rabanser, Alexander (2018): Warenkorbanalyse Teil 1. Analytische Grundlagen und Korrelationsanalyse in Excel. Online unter https://linearis.at/blog/2018/04/06/warenkorbanalyse-teil-1-analytische-grundlagen-und-korrelationsanalyse-in-excel/ [Abruf am 13.12.2019]

12 vgl. Ng, Annalyn; Soo, Kenneth (2017): Data Science – Was ist das eigentlich?! Algorithmen des maschinellen Lernens verständlich erklärt. Berlin, Heidelberg: Springer


Dieser Beitrag ist im Rahmen der Lehrveranstaltung Content Management im Wintersemester 2019/20 bei Andre Kreutzmann (und Monika Steinberg) entstanden.

Aufgabentypen des Data Mining

WebLab HsH: Data Mining

Autorin:  Linda Görzen

Dieser Beitrag im Überblick:

Einführung: Data Mining – Was ist das?

”Signals always point to something. In this sense, a signal is not a thing but a relationship. Data becomes useful knowledge of something that matters when it builds a bridge between a question and an answer. This connection is the signal.”

― Stephen Few, Signal: Understanding What Matters in a World of Noise[5]

Unter Data Mining versteht man einen Prozess, bei dem man mithilfe anspruchsvoller mathematischer und statistischer Algorithmen in großen Datenmengen nach Mustern, Trends und Zusammenhängen sucht.[1]  Die Besonderheit des Data Mining ist die automatische Generierung der neuen Hypothesen aus den Datenmengen.[4]  So kann man beispielsweise anhand der Verkaufsdaten untersuchen, ob und wann Kunden, die Produkt A gekauft haben, auch Produkt B kaufen.

Ziele der Untersuchung einer Datenmenge können unterschiedlich sein. Je nach Ziel gibt es im Data Mining dafür passende Aufgabenstellungen beziehungsweise -typen und dazugehörige Methoden. Typische Aufgabentypen sind Klassifikation, Regressionsanalyse, Assoziationsanalyse, Ausreißererkennung und Clusteranalyse. Darüber hinaus werden die Aufgabentypen des Data Mining oftmals nur in zwei Gruppen eingeteilt. Diese sind Beobachtungsprobleme (Clusteranalyse, Ausreißererkennung) und Prognoseprobleme (Klassifikation, Regressionsanalyse). [6]

Klassifikation

Die Objekte der vorhandenen Daten werden anhand ihrer Merkmale in Klassen zusammengefasst. Die dadurch gebildeten Klassenmengen dienen als Grundlage für die Entwicklung eines Klassifikationsmodells. Mit dem Klassifikationsmodell lässt sich nun die Klassenzugehörigkeit eines neuen Objekts automatisch vorhersagen.[2]

Regressionsanalyse

Die Regressionsanalyse basiert auf den Konzepten der Varianz und Kovarianz. Dies bedeutet, es wird nach Zusammenhängen beziehungsweise Abhängigkeiten zwischen Variablen gesucht. Meistens setzt man eine Regressionsanalyse bei Prognosen und Vorhersagen ein.[3]

So ist es möglich, aus den historischen Daten der Umsätze eines Kunden und seinem Wohnort eine Kennzahl zu ermitteln. Diese Kennzahl kann beispielsweise der zu erwartende Umsatz, den der Kunde in Zukunft einbringen wird, sein.[8]

Assoziationsanalyse

Bei der Assoziationsanalyse untersucht man die einzelnen Datensätze eines Datenbestandes auf Zusammenhänge, bei denen auf ein Ereignis konsequent ein anderes folgt. [8] Diese Zusammenhänge werden über Wenn-dann-Regeln beschrieben. Typischer Anwendungsbereich der Assoziationsanalyse ist die Untersuchung des Warenkorbes. Ein Beispiel dafür ist folgendes:  Wenn ein Kunde Mehl kauft, dann kauft er wahrscheinlich auch die Butter. Die Assoziationsanalyse kann aber auch für die Untersuchung komplexerer Zusammenhänge benutzt werden. Etwa, in welchem Zeitabstand nach dem Kauf des Produktes A, der Kauf des Produktes B erfolgt. [1]

Ausreißererkennung

Ausreißer sind die Werte, die deutlich von den erwarteten Werten abweichen und gar nicht in die Messreihe passen. Sie können die Datenergebnisse stark verzerren und ungültig machen. Aus diesem Grund muss ein Datenbestand von den Ausreißern bereinigt werden. [3]  Die Verfahren zur Analyse von Ausreißern sollen mithilfe der historischen Daten die Wahrscheinlichkeit ermitteln, mit der ein neuer Datensatz ein Ausreißer ist. Dieser soll dann entweder automatisch gelöscht oder zur manuellen Analyse gesammelt werden. [8]

Clusteranalyse

Die zentrale Aufgabe einer Clusteranalyse ist es, neue Kategorien bzw. Gruppen zu identifizieren. Denn im Gegensatz zu Klassenanalyse sind bei dieser Methode die Klassen nicht vorgegeben. Bei der Clusteranalyse werden große Datenmengen in kleinere Gruppen eingeteilt (siehe Abbildung 1).  Die Mitglieder eines Clusters sollen möglichst ähnliche (homogen) Eigenschaften aufweisen. Die einzelnen Clusterkategorien sollen sich wiederum möglichst stark unterscheiden (heterogen).[7]

Da die Cluster ohne Vorwissen generiert werden, ist es nicht immer eindeutig, was die Cluster ähnlich macht und ob sie auch inhaltlich relevant sind. Für eine Aufklärung sind zusätzliche Analysen zuständig.[7]

EM-Gaussian-data
Abbildung 1: Clusteranalyse[9]  (Autor: Chire Linzenz: CC BY-SA)

Im folgenden Video sind weitere Informationen  zum Thema Methoden  beziehungsweise Aufgabentypen des Data Mining  mit dazugehörigen Beispielen zu finden:

Fazit

Das Anwendungspotenzial des Data Mining ist vielfältig, da es in unterschiedlichen Bereichen verwendet werden kann. Aber vor allem in der Wirtschaft spielt es eine große Rolle. Mit dem Einsatz der Datenanalyse durch Data Mining können sich Händler besser auf das Kaufverhalten der Kunden anpassen und ihnen ein besseres Einkaufsserlebnis sowohl online als auch im Laden anbieten. Ferner können Banken und Versicherungen die Bonität ihrer Kunden schneller beurteilen.

Nichtsdestotrotz sollte man immer bedenken, dass die Daten nicht immer vollständig oder zum Teil fehlerhaft sein können, was zu verfälschten Resultaten führt. Somit ist die Qualität der Daten ausschlaggebend für aussagekräftige Ergebnisse.

 


Quellen:

1 Computerwoche (2015): Was ist bei Predictiv Analytics? Online unter: https://www.tecchannel.de/a/was-ist-was-bei-predictive-analytics,3199559,2 [Abruf am 25.01.2020]

2 Dürr, Holger (2004): Anwendungen des Data Mining in der Praxis. Online unter: http://www.mathematik.uni-ulm.de/sai/ws03/dm/arbeit/duerr.pdf [Abruf am 25.01.2020]

3 Entwickler.de (2014): Data Mining: typische Verfahren und Praxisbeispiele. Online unter: https://entwickler.de/online/datenbanken/data-mining-typische-verfahren-und-praxisbeispiele-115010.html [Abruf am 25.01.2020]

4 Enzyklopädie der Wirtschaftsinformatik Online – Lexikon (2019): Data Mining. Online unter:  https://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/daten-wissen/Business-Intelligence/Analytische-Informationssysteme–Methoden-der-/Data-Mining/index.html [Abruf am 25.01.2020]

5 Goodreads (2020): Signal Quotes. Online unter: https://www.goodreads.com/work/quotes/45158439-signal-understanding-what-matters-in-a-world-of-noise [Abruf am 30.01.2020]

6 MSO Digital (2019): Data Mining. Online unter: https://www.mso-digital.de/wiki/data-mining/ [Abruf am 25.01.2020]

7 Novustat (2019): Data Mining Methoden – ein verständlicher Überblick über die wichtigsten Verfahren. Online unter: https://novustat.com/statistik-blog/data-mining-methoden-ueberblick.html [Abruf am 25.01.2020]

8 Ordix AG (o. J.): Data Mining in der Praxis (Teil I). Online unter: https://www.ordix.de/ordix-news-archiv/1-2017/data-mining-in-der-praxis-teil-i-was-ist-data-mining.html [Abruf am 25.01.2020]

9 Wikipedia commons (2016): EM-Gausian-data.svg. Online unter: https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg [Abruf am 31.01.2020]


Dieser Beitrag ist im Rahmen der Lehrveranstaltung Content Management im Wintersemester 2019/20 bei Andre Kreutzmann (und Monika Steinberg) entstanden.

SneakPeak Bachelor: IT-Kompetenzen analysieren und klassifizieren

WebLab HsH: Bachelorabiet von Matthias Olbrisch, 2019

In seiner Bachelorarbeit mit dem Titel “Analyse und Klassifikation der hannoverschen IT Kompetenzen in einer variablen Datenbasis” schreibt Matthias Olbrisch (2019) in seinem Abstrakt:

“Die allgemeine Digitalisierung und besonders die IT-Branche in Hannover, stellen Arbeitgeber*innen vor große Herausforderungen. Berufsbezeichnungen im IT-Sektor zeichnen sich im Gegensatz zu klassischen Berufsfeldern nicht dadurch aus, dass sie vereinheitlicht sind. Unterschiedlichste Berufsbezeichnungen verlangen oftmals identische Kompetenzen. Die Kompetenzen und Fähigkeiten der Arbeitnehmer*innen stehen ebenso immer mehr im Fokus der Arbeitgeber*innen, wie die Bereitschaft der permanenten Weiterbildung.

Zielgebend der vorliegenden Abschlussarbeit ist eine Datenbasis zu liefern, die den Anspruch hat, die bereits beschriebenen Herausforderungen zu analysieren und zu klassifizieren. Zunächst ist daher eine Klassifikation, der auf dem hannoverschen Jobmarkt gesuchten IT-Kompetenzen, zu erstellen. Vorbereitend wird eine Marktanalyse angefertigt, die sowohl Jobsuchmaschinen auf ihre Kompetenzorientierung als auch IT-Kompetenzklassifikationen untersucht.

Die erstellte Klassifikation bildet anschließend die Grundlage für das Kompetenzmatching zwischen Klassifikation und den Kompetenzen, die hannoversche IT-Studierende erlernen, um zu verdeutlichen, in welchen Kompetenzen Weiterbildungsbedarf besteht. Die entstandene Datenbasis wird in einer MySQL Datenbank präsentiert, um eine möglichst flexible Verwendung und Weiterentwicklung des Datenbestands zu ermöglichen.”

Die Bachelorarbeit von Matthias ist Teil unseres Forschungsprojekts nITo (Nutzerzentrierte IT-Kompetenzoptimierung). Sie wurde vorbildlich über SerWisS veröffentlicht und ist als Volltext zu finden unter:

https://doi.org/10.25968/opus-1562

SneakPeak Bachelor: Kochkurs nach Scrum-Prinzip

WebLab HsH: Scrum-Kochkurs

Das Vermitteln von agilen Arbeitsmethoden ist für viele Menschen zwar interessant, jedoch sind Vorträge über solche Themen oftmals monoton und reizlos. Die Agile Kitchen GmbH hat sich einen individuellen Weg ausgedacht, um diese agilen Methoden auf unterhaltsame Weise zu vermitteln. Sie haben einen Kochkurs entwickelt, der nach dem Scrum-Prinzip funktioniert. Durch die metaphorische und praktische Anwendung lernt der Nutzer nach dem Learning-by-Doing-Prinzip.

Sowohl die Mitarbeiter eines Unternehmens, als auch Einzelpersonen, die sich privat weiterbilden möchten, können diesen Kurs als Fortbildungsmaßnahme besuchen.

Das Learning-by-Doing-Prinzip ist eine effektive Art zu lernen. Diese Methode setzt darauf, dass direkt Erfahrungen gesammelt werden können und bewusst aus Fehlern gelernt werden kann.

Das Angebot des agilen Kochens ist individuell anpassbar. Es werden vier verschiedene Kurse offeriert, welche je nach Zielgruppe gebucht werden können.

Alle Schritte von Scrum werden hierbei erklärt und anhand einer Metapher dargestellt. Nach dem Start werden die Teilnehmer in Kochteams aufgeteilt. Kurz darauf beginnt der Prozess bei dem bspw. einWarenkorb den Product Backlog bildet.

Hier geht’s zum Scrum-Kochkurs: https://www.wuv.de/karriere/dieser_kochkurs_vermittelt_wie_scrum_funktioniert

Dieser Artikel wurde zur Bachelorarbeit “Anwendbarkeit der Prinzipien von Neue Arbeit in mittelständischen Unternehmen” von Ivo Fehn verfasst.

Wenn Ihr mehr zum Thema New Work und KMUs lesen möchtet findet Ihr die gesamte Bachelorarbeit von Ivo hier als pdf-Datei.

BestOf Bachelor: Webbasierte Programmierplattformen für Kinder im Vergleich

WebLab HsH: Bachelorarbeit von Sarah Büchting, 2019

In der Bachelorarbeit von Sarah Büchting (2019) mit dem Titel “Webbasierte Programmierplattformen für Kinder im Vergleich” wird thematisiert, wie Coding zu Zwecken der sich im Umbruch befindenden MINT-Bildung eingesetzt werden kann und welche Kompetenzen durch das Erlernen von Programmierfähigkeiten gefördert werden.

Darüber hinaus wird ein Bezug zur Informatik als Herkunftswissenschaft des Coding hergestellt und die Relevanz einer frühzeitigen Aneignung von Programmierfähigkeiten in einer digitalen Gesellschaft beleuchtet.

Eine Analyse der webbasierten Programmierplattformen Open Roberta Lab, Scratch, Sprite Lab von Code.org und TurtleCoder, die zur Vermittlung von Programmierfähigkeiten bei Kindern genutzt werden können, gibt Aufschluss darüber, ob sich die benannten Programmierplattformen auch für den Einsatz in außerschulischen Bildungseinrichtungen, wie etwa öffentlichen Bibliotheken, eignen.

Die Bachelorarbeit von Sarah wurde vorbildlich über SerWisS veröffentlicht und ist als Volltext zu finden unter:

https://doi.org/10.25968/opus-1326

WebLab und QpLuS-IM: Unser neues Team

WebLab Team HsH

Seit Januar 2019 ist das WebLab Teil des QpLuS-IM-Projekts im Studiengang Informationsmanagement. Auch QpLuS-IM widmet sich dem Ausbau von Blended-Learning-Szenarien sowie mehr Selbststeuerungskompetenz durch digitales Lernen und führt so den WebLab-Ansatz wunderbar weiter, wie im Detail auf der QpLuS-IM-Projekt-Website zu lesen ist.

Neues WebLab-Team

Da sich Einige des ursprünglichen 2017er WebLab-Teams inzwischen leider (und auch nicht “leider“,  weil ja genau richtig so) im Studiums-Endspurt mit Praktika und Bachelorarbeit befinden, haben wir inzwischen tolle Unterstützung durch fünf neue studentische Hilfskräfte bei QpLuS-IM und im WebLab. Wer das genau ist und was sie so machen, finden Sie unter WebLab-Team und auf der QpLuS-IM-Website.

InfoInMotion2019: Das WebLab stellt sich vor

Das WebLab bei InfoInMotion2019

Am Freitag, 11. Oktober 2019 ist es soweit:

Unsere Veranstaltung “InfoInMotion2019: Information in Transformation” findet im DesignCenter auf der Expo Plaza 2 statt. Auch das WebLab ist dabei und stellt einige seiner besten, studentischen Arbeiten vor.

Mehr zu InfoInMotion2019 samt Online-Anmeldung und Programm finden Sie auf der Website des Studiengangs Informationsmanagement.

Wir freuen uns auf ihren Besuch!
🙂

Progressive Web Apps für IM: Interaktiver Stundenplan

Interaktiver Stundenplan

Autoren: Hozan Hassan, Frederik Pusch, Valentin Griese, Marcel Hemmer und Lukas Fischer

PWA: Interaktiver Stundenplan

Quellcode

Idee/Zielsetzung:

Die Progressive Web App (PWA) “Interaktiver Stundenplan” zum Studiengang Informationsmanagement bietet eineÜbers icht über aller Kurse des BIM unterteilt in die jeweiligen Semester. Die Kurse sollen einfach per Drag and Drop in einen Stundenplan gezogen werden.

Umsetzung

HTML und CSS

Der Stundenplan und die Liste der Fächer sind mit HTML und CSS umgesetzt.

Dabei wird bei der Strukturierung der Semester und Kurse mit einer Liste ausgeführt. Mit dem <details>-Tag können Seiteninhalte, in dem Fall die Tabelle mit den Fächern, versteckt werden.

index.html

<details>
    <summary>1. Semester</summary>
    <ul class="auswahl">
        <li id="0">Informationsstrukturen</li><br/>
        <li id="64">Grundlagen der Erschließung</li><br/>
        <li id="65">Relationale Datenbanken</li><br/>
        <li id="66">Grundlegende WWW-Techniken</li><br/>
        <li id="67">Grundlagen der Statistik</li><br/>
        <li id="1">Nutzerforschung 1 - Grundlagen</li><br/>
        <li id="2">Angewandte Kommunikation 1</li><br/>
        <li id="3">Wissenschaftliche Arbeitstechniken</li><br/>
        <li id="4">Grundlagen der Informatik</li><br/>
        <li id="5">Grundlagen der Mathematik</li><br/>
        <li id="6">Grundlagen der Informatik und Mathematik</li><br/>
    </ul>
</details>

Der Stundenplan an sich wird ebenfalls mit einer simplen Tabelle realisiert. Die Felder, in denen später ein Fach reingezogen werden kann, bleiben einfach leer.

index.html

<table>
    <col style="width:5%">
    <col style="width:19%">
    <col style="width:19%">
    <col style="width:19%">
    <col style="width:19%">
    <tr>
        <th class="zeit" style="text-align:center">Zeit</th>
        <th style="text-align:center">Montag</th>
        <th style="text-align:center">Dienstag</th>
        <th style="text-align:center">Mittwoch</th>
        <th style="text-align:center">Donnerstag</th>
        <th style="text-align:center">Freitag</th>
    </tr>
    <tr>
        <td class="zeit">08:00<br/>-09:30</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
    <tr>
        <td class="zeit">09:30<br/>-11:00</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
    <tr>
        <td class="zeit">11:00<br/>-12:30</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
    <tr>
        <td class="zeit">12:30<br/>-14:00</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
    <tr>
        <td class="zeit">14:00<br/>-15:30</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
    <tr>
        <td class="zeit">15:30<br/>-17:00</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
    <tr>
        <td class="zeit">17:00<br/>-18:30</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td>
    </tr>
</table>

Framework

Die PWA nutzt die JavaScript-Bibliothek JQuery UI, die die Drag and Drop Funktion sowie die Touch-Bedienung am Stundenplan umsetzt.

Drag and Drop

Erlaubt das Ziehen der Fächer in den Stundenplan.

Funktion.js:

$(function () {
    $("#div_drag li").draggable(
    {
        appendTo: "body",
        helper: "clone",
    });
    startDrop($("#div_drop table td"));
    function startDrop($elements) {
        $elements.droppable({
                hoverClass: "ui-drop-hover",
                over: function (event, ui) {
                    var $this = $(this);
                },
                drop: function (event, ui) {
                    var $this = $(this);
                    $("<span></span>").text(ui.draggable.text()).appendTo(this);
                    $(".auswahl").find(":contains('" + ui.draggable.text() + "')");
                }
        });
    }
});

Optimierung für Touchscreens

Damit die PWA responsiv wird, z.B. auch auf Handys läuft und die Drag and Drop-Funktion auch auf Touchscreens funktioniert, gibt es die Funktion jquery.ui.touch-punch.min. Diese Funktion stammt von touchpunch.

jquery.ui.touch-punch.min

!function(a){function f(a,b){
	if(!(a.originalEvent.touches.length>1)){
		a.preventDefault();
		var c=a.originalEvent.changedTouches[0],d=document.createEvent("MouseEvents");
		d.initMouseEvent(b,!0,!0,window,1,c.screenX,c.screenY,c.clientX,c.clientY,!1,!1,!1,!1,0,null),a.target.dispatchEvent(d)
	}
}
if(a.support.touch="ontouchend"in document,a.support.touch){
	var e,b=a.ui.mouse.prototype,c=b._mouseInit,d=b._mouseDestroy;b._touchStart=function(a){
		var b=this;!e&&b._mouseCapture(a.originalEvent.changedTouches[0])&&(e=!0,b._touchMoved=!1,f(a,"mouseover"),f(a,"mousemove"),f(a,"mousedown"))},b._touchMove=function(a){e&&(this._touchMoved=!0,f(a,"mousemove"))},b._touchEnd=function(a){
			e&&(f(a,"mouseup"),f(a,"mouseout"),this._touchMoved||f(a,"click"),e=!1)},b._mouseInit=function(){
				var b=this;b.element.bind({touchstart:a.proxy(b,"_touchStart"),touchmove:a.proxy(b,"_touchMove"),touchend:a.proxy(b,"_touchEnd")
			}),c.call(b)},b._mouseDestroy=function(){
				var b=this;b.element.unbind({
					touchstart:a.proxy(b,"_touchStart"),touchmove:a.proxy(b,"_touchMove"),touchend:a.proxy(b,"_touchEnd")
				}),d.call(b)}}}(jQuery);

Buttons

Die Funktionen der Buttons wurden mit JavaScript umgesetzt.

Fächer

Blendet die Liste mit den Fächern aus.

<script>                                                       
    $('#btn').click(function(){$('#div_drag').toggle();});
</script>

Zeit

Blendet die Zeit-Spalte aus.

<script>
    $('#btn_zeit').click(function() {$('.zeit').toggle();}); 
</script>

Zurücksetzten

Lädt das Fenster einfach neu und setzt es einfach auf den Ausgangszustand zurück

Ergebnis und Funktionen

Die Oberfläche ist simpel gehalten und kann in drei Teile geteilt werden. Auf der linken Seite die Kurse, welche nach Semester sortiert sind, auf der anderen Seite der Stundenplan. Über den Hauptelementen sind drei Buttons angeordnet.

Semester & Kurse

Auf der linken Seite stehen die Semester, die per Klick eine Liste mit den Kursen aufklappen lässt. Die danach gezeigten Kurse können dann per Drag and Drop in den Stundenplan gezogen werden.

Stundenplan

Im Plan sind die wesentlichen Merkmale eines Stundenplanes eingepflegt. Wochentage (Spalten), von Montag bis Freitag, und Zeiten (Reihen), in 90 Minuten Phasen, realisieren den Aufbau. Jede zweite Reihe ist dabei grau eingefärbt.

Buttons

Über dem Stundenplan befinden sich drei Buttons: „Fächer“, „Zeit“ und „Zurücksetzten“.

Um die Ansicht übersichtlicher zu machen, kann man mit den Buttons Fächer und Zeit, Teile des Stundenplanes ausblenden. Der Zeit-Button entfernt oder fügt die Zeitleiste links am Plan hinzu.  Per Klick auf „Fächer“ geschieht dasselbe mit den Listen der Kurse. Der dritte Button „zurücksetzten“ löscht alle Einträge im Stundenplan.

 

Im Studiengang Informationsmanagement an der Hochschule Hannover sind im Rahmen des Kurses Entwicklung von Multimediasystemen I (Wintersemester 2018/19, Prof. Dr.-Ing. Steinberg, Viktor Eisenstadt) einige gute Progressive Web Apps (PWA) mithilfe des JavaScript-Frameworks ReactJS entstanden. Verwendete Techniken sind HTML5, CSS3 und JavaScript.

Die besten PWAs stellen wir euch hier in den nächsten Wochen nach und nach vor.

 

Progressive Web Apps für IM: Teilnehmerverzeichnis ‘Social Contact’

Social Contact

Autoren: Matthias Galda, Catharina Ochsner, Anja Preuße, Sarah Gehrmann

fertige PWA
Quellcode

Idee/Zielsetzung

Zweck der Progressive Web Apps (PWA) soll es sein, die Kontaktdaten der Ansprechpartner aufzulisten, die an der Veranstaltung “InfoInMotion2019” am 11. Oktober teilnehmen.

Überlegungen

Die Startseite enthält eine Lightbox. Darin soll der User Informationen über die Website und ihren Zweck sowie über die Veranstaltung „InfoInMotion2019“ erhalten.

Mock-Up der Startseite
Mock-Up der Startseite

Mithilfe einer Suchfunktion soll es dem User möglich sein, nach interessanten Kontakten zu suchen. Hier sollte der User angeben können zu welcher Gruppe er gehört (Studenten, Studieninteressiert oder Unternehmen) und eine Kontaktgruppe wählen, zu der er Informationen erhalten möchte (Studenten, Dozenten oder Unternehmen).

 

 

Mock-Up der Übersichtsseite
Mock-Up der Übersichtsseite

Des Weiteren wurden drei Seiten geplant und erstellt, auf denen die einzelnen Gruppen vorgestellt werden. Dort sollen einzelne Personen oder Unternehmen aufgeführt werden.

Für den Fall, dass der User mehr über eine Person oder ein Unternehmen erfahren will, kann er diese anklicken und wird auf eine Profilseite der jeweiligen Person/ des Unternehmens weitergeleitet.

Zuletzt soll das Impressum die üblichen Informationen über die Autoren enthalten.
In der Kopfzeile kann der User den Namen der Website finden sowie die direkt darunterliegende Navigation mit dem „Burger“-Menü. Die Fußzeile sollte Links zu dem Impressum und zu dem Studiengang enthalten.
Das genaue Design und den Aufbau der PWA haben wir zusätzlich in Mock-Ups festgehalten.

Umsetzung

Für die Umsetzung der Funktionalitäten haben wir das Framework React in Kombination mit JavaScript genutzt. Die Grundstruktur und die Benutzeroberfläche wurde mit HTML5 und CSS3 erstellt.

Das Design der Seite haben wir schlicht gehalten und uns farblich an den Farben der Fakultät III der Hochschule Hannover orientiert.
In der Praxis haben wir eine vereinfachte Version der oben beschriebenen PWA entworfen. Beim Aufruf der Startseite erscheint eine Lightbox, die den Besucher auf die Offline- sowie App-Nutzung hinweist. Direkt auf der Startseite sind Informationen über die Lehrveranstaltung und den Zweck der PWA zu finden. Über die „Suche“ kann der Benutzer nach Personen und Unternehmen suchen und sich die Ergebnisse in einer Tabelle ausgeben lassen.

Ergebnisse in Tabellenform
Ergebnisse in Tabellenform

Die einzelnen Seiten zu den Personen und Unternehmen haben wir zur besseren Übersicht und aus technischen Gründen weggelassen. Allerdings können diese später noch hinzugefügt werden. Das Impressum wurde wie geplant angelegt. Dort findet der Leser die Informationen zu den Autoren. Die Kopf- und Fußzeile wurden ebenfalls wie geplant umgesetzt.

 

Funktionalität

Die Lightbox wird beim Laden der Startseite abgerufen und mittig angezeigt. Mit einem Klick auf das X kann die Lightbox geschlossen werden.


Um die Lightbox anzuzeigen wird einem DIV-Container ein Zustand zugewiesen, der sich ändert, sobald das X angeklickt wird. Beim Neuladen der Startseite wird der Zustand des DIV-Containers auf den zuvor gesetzten Standard zurückgesetzt. Mithilfe einer if-Funktion wird der Zustand des DIV-Containers abgefragt. Entspricht der Zustand dem vorher gesetzten, wird die Box wieder aufgerufen.

Codeausschnitt der Lightbox
Codeausschnitt der Lightbox

Die Daten über die Personen und Unternehmen wurden über die asynchrone API von IndexedDB eingepflegt. Dadurch können die Daten sowohl online als auch offline abgerufen werden. Diese Daten werden ausschließlich für die Suche benötigt. Dabei hat der User die Möglichkeit über ein Dropdown-Menü auszuwählen, welche Zielgruppe er sucht. Dieses Dropdown-Menü wird mithilfe einer Funktion erstellt, die die jeweilige Kategorie eines Dateneintrags sucht und so zusammenfasst, dass keine doppelten Einträge erscheinen. Durch das Auslesen der Kategorie kann die Tabelle so gefiltert werden, dass nur Einträge der entsprechenden Kategorie aufgelistet werden.

Für die mobile Ansicht haben wir die Tabelle so beschrieben, dass sie auch horizontal scrollbar ist. Ansonsten wäre eine mobile Ansicht nur schwer realisierbar gewesen.

Im Studiengang Informationsmanagement an der Hochschule Hannover sind im Rahmen des Kurses Entwicklung von Multimediasystemen I (Wintersemester 2018/19, Prof. Dr.-Ing. Steinberg, Viktor Eisenstadt) einige gute Progressive Web Apps (PWA) mithilfe des JavaScript-Frameworks ReactJS entstanden. Verwendete Techniken sind HTML5, CSS3 und JavaScript.

Die besten PWAs stellen wir euch hier in den nächsten Wochen nach und nach vor.